Input data
N | Mean | SD | Min | Max | |
---|---|---|---|---|---|
cylinders | 398 | 5.454774 | 1.7010042 | 3 | 8.0 |
displacement | 398 | 193.425879 | 104.2698382 | 68 | 455.0 |
horsepower | 392 | 104.469388 | 38.4911599 | 46 | 230.0 |
weight | 398 | 2970.424623 | 846.8417742 | 1613 | 5140.0 |
acceleration | 398 | 15.568091 | 2.7576889 | 8 | 24.8 |
model | 398 | 76.010050 | 3.6976266 | 70 | 82.0 |
origin | 398 | 1.572864 | 0.8020549 | 1 | 3.0 |
Variable for ml response (mpg)
N | Mean | SD | Min | Max | |
---|---|---|---|---|---|
class | 398 | 23.51457 | 7.815984 | 9 | 46.6 |
ML task
target_names | num_col | num_row |
---|---|---|
class | 8 | 398 |
Regression measures on input data
regr.mse | regr.rmse | regr.maxae |
---|---|---|
5.8795 | 2.424768 | 7.674978 |
Random sample of 5 response values
row_ids | truth | response |
---|---|---|
99 | 16 | 15.71012 |
386 | 38 | 34.62937 |
57 | 26 | 26.14580 |
230 | 16 | 15.33663 |
48 | 19 | 17.51291 |
Learner
task_type | regr |
predict_type | response |
scale.robust | 0 |
regr.xgboost.alpha | 0.00841273302842034 |
regr.xgboost.colsample_bylevel | 0.870184205728583 |
regr.xgboost.colsample_bytree | 0.786294631077908 |
regr.xgboost.eta | 0.00464192861730337 |
regr.xgboost.lambda | 0.00108953676875045 |
regr.xgboost.nrounds | 3363 |
regr.xgboost.nthread | 1 |
regr.xgboost.subsample | 0.342429502122104 |
regr.xgboost.verbose | 0 |
Timings
train | predict |
---|---|
0.681 | 0.044 |
New data for ml response
row_ids | truth | response |
---|---|---|
1 | NA | 17.97798 |
A more complete example of machine learning
leavesml with mlr3
Notes classification measures
Notes random sample
Notes data source
## Last Page Update Mon Aug 29 19:03:00 2022