HOME | LOGIN | PRIVACY POLICY

leavesml

Machine learning supervised regression problem on auto mpg.

Input data

N Mean SD Min Max
cylinders 398 5.454774 1.7010042 3 8.0
displacement 398 193.425879 104.2698382 68 455.0
horsepower 392 104.469388 38.4911599 46 230.0
weight 398 2970.424623 846.8417742 1613 5140.0
acceleration 398 15.568091 2.7576889 8 24.8
model 398 76.010050 3.6976266 70 82.0
origin 398 1.572864 0.8020549 1 3.0

Variable for ml response (mpg)

N Mean SD Min Max
class 398 23.51457 7.815984 9 46.6

ML task

target_names num_col num_row
class 8 398

Regression measures on input data

regr.mse regr.rmse regr.maxae
5.8795 2.424768 7.674978

Random sample of 5 response values

row_ids truth response
99 16 15.71012
386 38 34.62937
57 26 26.14580
230 16 15.33663
48 19 17.51291

Learner

task_type regr
predict_type response
scale.robust 0
regr.xgboost.alpha 0.00841273302842034
regr.xgboost.colsample_bylevel 0.870184205728583
regr.xgboost.colsample_bytree 0.786294631077908
regr.xgboost.eta 0.00464192861730337
regr.xgboost.lambda 0.00108953676875045
regr.xgboost.nrounds 3363
regr.xgboost.nthread 1
regr.xgboost.subsample 0.342429502122104
regr.xgboost.verbose 0

Timings

train predict
0.681 0.044

New data for ml response

row_ids truth response
1 NA 17.97798

A more complete example of machine learning

leavesml with mlr3

Notes classification measures

Notes random sample

Notes data source

## Last Page Update Mon Aug 29 19:03:00 2022