Input data
N | Mean | SD | Min | Max | |
---|---|---|---|---|---|
age_in_years | 303 | 54.4389439 | 9.0386624 | 29 | 77.0 |
sex | 303 | 0.6798680 | 0.4672988 | 0 | 1.0 |
chest_pain_type | 303 | 3.1584158 | 0.9601256 | 1 | 4.0 |
resting_blood_pressure | 303 | 131.6897690 | 17.5997477 | 94 | 200.0 |
fasting_blood_sugar | 303 | 0.1485149 | 0.3561979 | 0 | 1.0 |
electrocardiographic | 303 | 0.9900990 | 0.9949713 | 0 | 2.0 |
max_heart_rate | 303 | 149.6072607 | 22.8750033 | 71 | 202.0 |
exercise_induced_angina | 303 | 0.3267327 | 0.4697945 | 0 | 1.0 |
depression_induced_exercise | 303 | 1.0396040 | 1.1610750 | 0 | 6.2 |
slope_of_the_peak_exercise | 303 | 1.6006601 | 0.6162261 | 1 | 3.0 |
num_of_major_vessels | 299 | 0.6722408 | 0.9374383 | 0 | 3.0 |
thal | 301 | 4.7342193 | 1.9397058 | 3 | 7.0 |
serum_cholestoral | 303 | 246.6930693 | 51.7769175 | 126 | 564.0 |
Variable for ml response
diagnosis of heart disease (angiographic disease status) | N |
---|---|
0 | 164 |
1 | 139 |
ML task
properties | target_names | num_col | num_row |
---|---|---|---|
twoclass | num | 14 | 303 |
Classification measures on input data
classif.acc | classif.bacc | classif.ce |
---|---|---|
0.8360656 | 0.8214286 | 0.1639344 |
Random sample of 5 response values
row_ids | truth | response |
---|---|---|
246 | 1 | 0 |
193 | 1 | 1 |
11 | 0 | 0 |
262 | 1 | 0 |
66 | 1 | 1 |
Learner
task_type | classif |
predict_type | response |
scale.robust | 0 |
classif.ranger.mtry.ratio | 0.0576324502471834 |
classif.ranger.num.threads | 1 |
classif.ranger.num.trees | 227 |
classif.ranger.replace | 0 |
classif.ranger.sample.fraction | 0.339497257373296 |
Timings
train | predict |
---|---|
0.049 | 0.03 |
New data for ml response
row_ids | truth | response |
---|---|---|
1 | NA | 0 |
A more complete example of machine learning
leavesml with mlr3
Notes classification measures
Notes random sample
Notes data source
## Last Page Update Sun Aug 28 09:28:18 2022