HOME | LOGIN | PRIVACY POLICY

leavesml

Machine learning supervised classification problem on heart disease.

Input data

N Mean SD Min Max
age_in_years 303 54.4389439 9.0386624 29 77.0
sex 303 0.6798680 0.4672988 0 1.0
chest_pain_type 303 3.1584158 0.9601256 1 4.0
resting_blood_pressure 303 131.6897690 17.5997477 94 200.0
fasting_blood_sugar 303 0.1485149 0.3561979 0 1.0
electrocardiographic 303 0.9900990 0.9949713 0 2.0
max_heart_rate 303 149.6072607 22.8750033 71 202.0
exercise_induced_angina 303 0.3267327 0.4697945 0 1.0
depression_induced_exercise 303 1.0396040 1.1610750 0 6.2
slope_of_the_peak_exercise 303 1.6006601 0.6162261 1 3.0
num_of_major_vessels 299 0.6722408 0.9374383 0 3.0
thal 301 4.7342193 1.9397058 3 7.0
serum_cholestoral 303 246.6930693 51.7769175 126 564.0

Variable for ml response

diagnosis of heart disease (angiographic disease status) N
0 164
1 139

ML task

properties target_names num_col num_row
twoclass num 14 303

Classification measures on input data

classif.acc classif.bacc classif.ce
0.8360656 0.8214286 0.1639344

Random sample of 5 response values

row_ids truth response
246 1 0
193 1 1
11 0 0
262 1 0
66 1 1

Learner

task_type classif
predict_type response
scale.robust 0
classif.ranger.mtry.ratio 0.0576324502471834
classif.ranger.num.threads 1
classif.ranger.num.trees 227
classif.ranger.replace 0
classif.ranger.sample.fraction 0.339497257373296

Timings

train predict
0.049 0.03

New data for ml response

row_ids truth response
1 NA 0

A more complete example of machine learning

leavesml with mlr3

Notes classification measures

Notes random sample

Notes data source

## Last Page Update Sun Aug 28 09:28:18 2022